
VOLUME: 1 | ISSUE: 2 | 2017 | November

Malware Detection Based on Multiple PE

Headers Identification and Optimization for

Specific Types of Files

Filip ZATLOUKAL*, Jiri ZNOJ

Department of Computer Science, VSB - Technical university of Ostrava,
17. listopadu 15, 708 33 Ostrava - Poruba, Czech Republic

*�lip.zatloukal@vsb.cz, jiri.znoj@vsb.cz
(Received: 20-August-2017; accepted: 24-October-2017; published: 30-November-2017)

Abstract. This paper follows our previous re-
search where we made a basic experiment to
�nd out if it is possible to detect malware by
multiple PE header detection. The previous re-
sults show us that there is a considerable amount
of malwares that connect themselves to another
�le. This paper summarizes our previous re-
sults, updates the results and also expands them
by adding an optimization method and also by
including the scan of another (speci�c) types of
data.

Keywords

File virus, malware detection, multiple

PE headers, parasitic virus.

1. Introduction

The subject of our research is a malware detec-
tion method and testing of other related meth-
ods. The aim is to use an unconventional
approach to malware detection, to test exist-
ing methods, improve them or to create a new
method, if the method produces satisfactory re-
sults. The currently examined topic is malware
detection by using metadata. Malware detection
by metadata testing is a topic that is not often
covered and this is the reason why we chose it for
our research. This paper describes a detection

method based on the idea of malware detection
by multiple PE headers occurrence.

From our previous research, it is apparent that
there are groups of malwares called parasitic
viruses � they infect other �les by connecting
their code to the host �le. They also often con-
nect their own headers and if the malware is con-
nected by one of the methods described below,
the original �le contains more than one header.
We are able to detect multiple PE headers and
if the scanned �le goes through our optimization
�lter, this �le is labelled as dangerous.

2. Related Work

In 2001 Schultz et al. introduced anti-malware
system based on information extracted from
Windows PE (Portable Executables) executa-
bles [1].

In 2006 J. Zico Kolter et al. came up with a
paper with a detection and classi�cation mali-
cious executable. This work contains informa-
tion, that thanks to detection by machine learn-
ing, when n-grams 030b0105 and 0b010219 are
present, the �le is malicious. After deeper in-
vestigation, they found out, that these values
indicated presence of two PE headers in a single
�le. In their dataset, there was small portion of
malicious programs with these values. Another
interesting fact was, that n-gram 0000000a ap-

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 153

VOLUME: 1 | ISSUE: 2 | 2017 | November

peared in 75 % of the malicious software. 20-
25 % pieces of malware were compressed or en-
crypted. In their dataset, none of the benign
executables were obfuscated. According to this
work obfuscating could detect payload function,
but it is not malware / benign detection [2].

In 2009 M. Zubair Sha�q et al. presented PE-
Miner framework that extracts (189) features
from PE �les. Big dataset (from 2 sources) in
amount of more than 15 thousand samples was
used. In this framework, the detection time was
decreased due to preprocessing of data against
previously mentioned detections [3].

In 2010 Ronny Merkel et al. mentioned in
their work 44 attributes (chosen due to other re-
lated researches) suitable for malware detection.
These attributes were composed of information
extracted from headers and of some overall prop-
erties (like for example string fragments). From
those 44 attributes, 23 features were chosen, in
one of following steps, for the classi�cation. Fea-
ture Quality was counted for every one of those
23 features [4].

In 2011 Farrukh Shahzad et al. presented
framework ELF-Miner for malware detection.
Data for detection were extracted from ELF
headers � Linux executables. Interesting fact
about sections in this work is, that names of
sections presented in benign �les are �.got.plt�
(49 %), �.rel.dyn� (47 %), �.comment� (3 %),
�.symtab� (1 %) and the rest of known sec-
tions are not present in all tested benign �les.
In malware dataset collection �.got.plt� section
is present only in 1 % of tested samples and
�.sbss� in 6 %. This is quite di�erent from sec-
tions in tested benign �les. Other sections (with
percentage occurrence) in all detected malware
samples are �.rel.dyn� - 9 %, �.note� - 18 %,
�.strtab� � 20 %, �.symtab� � 20 % and �.com-
ment� � 26 % [5].

In 2012 Yibin Liao wrote a paper with PE-
Header-Based detection approach with a PE-
Header-Parser. This parser was used for ana-
lyzing parts of PE headers and comparing mal-
ware and benign �les according to those parts
of headers. The result of this detection was,
that File Header has no big di�erence in benign
�les and malicious �les. On the other hand, Op-
tional Header has some interesting values. When

SizeOfInitializedData equals to zero, then it is a
malicious software. When DLLCharacteristics,
MajorImageVersion and CheckSum are equals to
zero, it is malware with 90 % accuracy. Names
of malware sections could have unknown names
(for example .6dnn4fh4) � benign �les do have
meaningful names for all sections [6].

In 2016 Mohamed Belaoued and Smaine Ma-
zouzi focused on detect time in malware detec-
tion on PE �les. They analyzed APIs (Applica-
tion Programming Interfaces) and TPFs (Tech-
nical PE Features). In this work, we can �nd
frequency of APIs and frequency of Optional-
header �eld for malware and benign �les too [7].

In 2017 David Baptiste et al. wrote a pa-
per, where they analyzed MZ-PE binary exe-
cutable �les. They had the idea to focus on
sections and came up with interesting results.
After structural analysis of various �les (ma-
licious or not) they concluded, that only ma-
licious �les could have unnamed sections and
only malicious �les sometimes do not have sec-
tions at all. Another result of their analysis
was, that if the name of a section had other
character than alphanumeric, �.� or �_�, then
section with such a character must be in ma-
licious �le. This work also contains rules (men-
tioned also in MZ-PE format documentation) for
SectionAlignment, FileAlignment, SizeOfRaw-
Data, PointerToRawData VirtualSize, Time-
DataStamp, PointrToSymbolTable, NumberOf-
Symbols, SizeOfOptionalHeader and for some
other parameters. If these rules are broke, we
can detect it as a malware. All legitimate �les
should follow these rules [8].

3. The Overview of

Malware Detection

Methods

1) Signature Based Detection:

It's the most commonly used detection method
[9]. The method uses known patterns to detect
malware. These patterns are loaded from an in-
ternal database. The method is able to detect
malware fast, but it cannot detect new kinds

154 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 2 | 2017 | November

of threats if they are not stored in the inter-
nal database. This is the reason, why antivirus
programs must upgrade their internal databases.
Methods also cannot e�ectively deal with mal-
ware obfuscation [10].

2) Behavior Based Detection:

This method uses its own internal sandbox
where the malware runs. The antivirus then
analyses the actions performed by malware.
This method is able to recognize both existing
and new kinds of threads. A disadvantage of
this method is a longer detection time needed
to perform actions in the sandbox. Also, not all
malware functions are performed because of ap-
plication code conditional branching or not all
requirements are met for malicious code activa-
tion.

3) Hybrid Analysis:

Hybrid analysis is the combination of static and
dynamic analysis. In �rst place, static analysis
is applied and then software is running in con-
trolled environment [11].

4) Statistical Based Detection:

Statistical based method �nds di�erent at-
tributes of software and then analyses these
properties by statistic methods. Example of this
method are Hidden Markov Models (HMMs)
[12].

5) Di�erent Approach:

Ashu Sharma et al. also add two more tech-
niques: Machine Learning and Malware Normal-
ization [13].

4. The Overview of

Malware Infection

Methods

One example of the malware category are par-
asitic viruses which use some of the following
methods to copy their own code to legitimate
�les. Some methods can damage target �le,
some not - it's possible to divide the methods
to two groups: destructive and non-destructive
methods.

1) Prepending Viruses:

In the process of infection, the virus puts its own
code in front of the original �le code. If such �le
is executed, OS runs malicious code instead of
the legitimate code �rst, but the original code is
executed also to hide malicious behavior, so the
user cannot identify it.

JOURNAL OF ADVANCED ENGINEERING AND COMPUTATION

1

Fig. 1. The example of an infection by a prepending virus.

Fig. 2. The example of an infection by an appending virus.

Fig. 3. The example of an infection by an inserting virus.

Fig. 4. The example of an infection by an overwriting

virus.

Fig. 5. Structure of PE format.

Program code

Program code

Virus code

Program code

Program code

Virus code

Program code Program code

Virus code

Virus code

Virus code

Program code Program code

Virus code

 DOS MZ header

DOS header

PE header

signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

Section table

…

Sections

.text

.rdata

.idata

.edata

.rsrc

…

Fig. 1: The example of an infection by a prepending

virus.

2) Appending Viruses:

The virus appends its code at the end of the
infecting �le. Because the malicious code is at
the end of the �le, the malware must also change
the original code to assure malware activation
when the �le is executed.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 155

VOLUME: 1 | ISSUE: 2 | 2017 | November

JOURNAL OF ADVANCED ENGINEERING AND COMPUTATION

1

Fig. 1. The example of an infection by a prepending virus.

Fig. 2. The example of an infection by an appending virus.

Fig. 3. The example of an infection by an inserting virus.

Fig. 4. The example of an infection by an overwriting

virus.

Fig. 5. Structure of PE format.

Program code

Program code

Virus code

Program code

Program code

Virus code

Program code Program code

Virus code

Virus code

Virus code

Program code Program code

Virus code

 DOS MZ header

DOS header

PE header

signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

Section table

…

Sections

.text

.rdata

.idata

.edata

.rsrc

…

Fig. 2: The example of an infection by an appending

virus.

3) Inserting Viruses:

The malicious code is placed at the address to
which the entry point value points and the rest
of the code is moved under the malicious code.
The entry point is a value referring to the start
of the executable code itself. Another way to
put the code in non-destructively is to spread
the code to the unused places in the �le. That
code doesn't have to be continuous but at the
end of each section, a jump instruction must be
inserted.

JOURNAL OF ADVANCED ENGINEERING AND COMPUTATION

1

Fig. 1. The example of an infection by a prepending virus.

Fig. 2. The example of an infection by an appending virus.

Fig. 3. The example of an infection by an inserting virus.

Fig. 4. The example of an infection by an overwriting

virus.

Fig. 5. Structure of PE format.

Program code

Program code

Virus code

Program code

Program code

Virus code

Program code Program code

Virus code

Virus code

Virus code

Program code Program code

Virus code

 DOS MZ header

DOS header

PE header

signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

Section table

…

Sections

.text

.rdata

.idata

.edata

.rsrc

…

Fig. 3: The example of an infection by an inserting

virus.

4) Overwriting Viruses:

Malware infects the �le in a way that the original
�le is overwritten by the virus's own copy. Un-
like others, this method is destructive. The virus
can overwrite the �le from the beginning but it
can also choose another start location (Random
Overwriting Viruses). If the executable �le is
overwritten from the beginning, the PE header
is also overwritten and the original program will
not be able to run without a header reconstruc-
tion (instead, the malware will run). If a ran-
dom section of the original �le is overwritten, it
is possible that the program will work but it will
also probably crash.

JOURNAL OF ADVANCED ENGINEERING AND COMPUTATION

1

Fig. 1. The example of an infection by a prepending virus.

Fig. 2. The example of an infection by an appending virus.

Fig. 3. The example of an infection by an inserting virus.

Fig. 4. The example of an infection by an overwriting

virus.

Fig. 5. Structure of PE format.

Program code

Program code

Virus code

Program code

Program code

Virus code

Program code Program code

Virus code

Virus code

Virus code

Program code Program code

Virus code

 DOS MZ header

DOS header

PE header

signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

Section table

…

Sections

.text

.rdata

.idata

.edata

.rsrc

…

Fig. 4: The example of an infection by an overwriting

virus.

5. PE Format

Portable Executable (PE) is a format de�ning
a form and a section layout of the executable
�les. PE is a data structure in the binary form
that is used by Windows system for exe �les, dll
libraries and other executable formats. PE keeps
the �le description information which is used by
Windows OS loader and also keeps the program
code itself. PE format and blocks are described
below [14]:

1) DOS MZ Header:

De�ned as �IMAGE_DOS_HEADER� struc-
ture. The �rst 64 bytes of the �le is a header
guarantee of DOS compatibility and it is in-
cluded even in current applications. The �rst
value of the header is named as �e_magic� (so-
called magic number) and it is used to identify
the DOS mode. The value must be always equal
to 0x54AD ("MZ" in ASCII). The header also
contains the �e_lfanew� value which is a rela-
tive o�set to the PE header.

2) DOS Stub:

This is a section for the DOS code itself. Nowa-
days, it is compiled only to show the message:
�This program cannot be run in DOS mode.�.

3) PE Header:

A structure also de�ned as �IM-
AGE_NT_HEADERS� containing the sig-
nature, �IMAGE_FILE_HEADER� structure
and �IMAGE_OPTIONAL_HEADER� struc-
ture. It is the main header for the Windows

156 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 2 | 2017 | November

executables and it consists of a variety of �elds
placed in �signature�, �COFF header� and �PE
Optional Header� structures. The description
of the �elds itself exceeds the scope of this
paper but in the research, the �signature�
value, �machine� value, �magic� value and
�AddressOfEntryPoint� value are the important
ones:

PE �signature� value has the similar meaning
as �e_magic� value from the DOS MZ header.
The value is equal to 0x50450000 ("PE \0\0"
in ASCII) and it is used for the identi�cation
of PE header. The machine value holding the
type of CPU the code is compiled for (the value
is used for compatibility check). �Magic� �eld
is a 2-byte value placed at the beginning of the
optional header and representing the architec-
ture type (0x010B for PE32, 0x020B for PE64,
0x0107 ROM). �AddressOfEntryPoint� is an ad-
dress of the application entry point (address
where the applications code begins).

4) Section Table:

De�ned in �IMAGE_SECTION_HEADER�
structure. Each section has its own section
header and these headers are used to describe
each of the following sections. The headers con-
tain section name, relative address, section size
and other values. The number of sections and
their names can be di�erent because the com-
piler controls these sections and names.

5) Sections:

The sections contain data created by compiler,
code itself and metadata corresponding with the
code. Sections names are controlled by a com-
piler, but the most commonly used names are
[15]:

.text = section containing the main executable
code; .rdata = read-only data that is globally ac-
cessible within the program; .data = global data
of the program; .idata = stores the information
about the import functions, if this section miss-
ing, data can be stored in the .rdata; .edata =
stores the information about the export func-
tions, if this section missing, data can be stored
in .rdata section; .pdata = exception-handling

for 64-bit architecture; .rsrc = stores various re-
sources; .reloc = information for relocation of
libraries.

The following picture shows the layout and
the structures of PE �le format:

JOURNAL OF ADVANCED ENGINEERING AND COMPUTATION

1

Fig. 1. The example of an infection by a prepending virus.

Fig. 2. The example of an infection by an appending virus.

Fig. 3. The example of an infection by an inserting virus.

Fig. 4. The example of an infection by an overwriting

virus.

Fig. 5. Structure of PE format.

Program code

Program code

Virus code

Program code

Program code

Virus code

Program code Program code

Virus code

Virus code

Virus code

Program code Program code

Virus code

 DOS MZ header

DOS header

PE header

signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

Section table

…

Sections

.text

.rdata

.idata

.edata

.rsrc

…

Fig. 5: Structure of PE format.

6. Experiment

The goal of our research is to scan a represen-
tative number of samples and to determine how
often the malware is bound to host �le by one of
the described method. It will be also tested if it
is possible to �nd malware by detecting multi-
ple PE headers. The necessary condition is that
malware connects itself (including PE header)
to the code without destroying the header of the
previous �le. The experiment focuses on con-
necting the malicious code only on executable
�les. The goal is also to make a result opti-

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 157

VOLUME: 1 | ISSUE: 2 | 2017 | November

mization based on the results from the previous
experiment.

1) Dataset:

Our dataset is composed of 9101 Windows pro-
grams in PE �le format. 5099 of them are mali-
cious software and 4002 user-friendly (clean) ex-
ecutable �les or DLLs. User friendly programs
were collected from di�erent sites such as Studna
[16], source-forge [17], �lehippo [18] and our lo-
cal laboratory's �les. Within research, these �les
were downloaded manually in order not to break
the license terms of selected servers. Malicious
software comes from: VirusShare [19], Malekal
malware db [20] and also our private university
collection.

For this research, we only process valid 32-bit
or 64-bit Windows executable or DLL �les with
valid PE header. 16-bit DOS �les or �les with
invalid PE headers are skipped. Most of the
friendly applications are stored as compressed
packages or installers. It was needed to install
(or unpack) all of these applications �rst, be-
cause a scan of these packages/installers will re-
turn the results for the packed format instead of
the unpacked application itself. Malware appli-
cations are already in the required format.

2) Multiple PE Header Detection:

For our research, a new application was devel-
oped. Application allows us to perform required
actions e�ectively. When scanning for multi-
ple PE headers, our software searches in the bi-
nary mode for signatures and magic values of PE
headers and DOS headers. If any of the value is
present, the software performs a check whether
the found value is not just a binary sequence of
data but if it really belongs to the PE header.

3) Malware Protection:

It is common practice to protect malware
against detection and analyzing. When malware
is packed, it is more di�cult to use static analy-
sis. A sample must be unpacked before. Packer
takes the original malware, makes wrapper and

creates a new binary �le. The whole binary or
only part of the �le can be packed. PE header
must be reconstructed for PE header analysis.
[15] We connected our application to Cuckoo
sandbox [21] to perform the detection of obfus-
cation and also data gathering from such packed
applications.

7. Results

We tested package of goodware and bad samples
separately. After testing all the samples, it was
discovered that 504 (9.884 %) of total 5099 mal-
ware samples have multiple PE headers. It is
interesting that also 231 (5.772 %) of legitimate
software from the total of 4002 include multi-
ple PE headers. After closer look on the tested
malware, most of them are really connected to
some host �le and act as parasitic viruses. Closer
look at the legitimate software shows that most
of the hits (130 hits, 56.277 %) are caused by
an application named �uninstall000.exe�. This
�le is a legitimate application created by �Inno
Setup� software and is used as an application
uninstaller. Other hits are caused by packages
including another software inside but also by a
small amount of legitimate applications.

1) Optimization:

Firstly, the false positive hits from the user-
friendly applications were analyzed manually. It
was found out that most of those false hits were
caused by the 3 types of uninstallers which cover
almost all types of uninstallers and also false
positive hits at all. The name of these �les were
always the same: unins000.exe, UNWISE.exe
and Uninstall.exe. unins000.exe caused 130
(56.277 %) false hits of the total, UNWISE.exe 9
(3.896 %) false hits of the total and Uninstall.exe
4 (1.732 %).

The �rst step of the optimization was to ex-
clude these types of uninstallers. We made an
integrity test to check if the uninstallers with the
same names are equal. We found out that even
if the uninstallers have the same name and look
similar, the internal data wasn't equal. It was
necessary to create a mechanism that would de-

158 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 2 | 2017 | November

tect these types of uninstallers. It is possible to
get it done by the name detection but we also
added the detection by byte patterns to be sure
that the uninstallers are not simply renamed for
example by malware. Unique byte patterns were
extracted from all mentioned uninstaller types
and placed to the detection algorithm. The false
positive hits were lowered from the 231 samples
to 88 samples by excluding uninstallers.

Following the discovery that multiple headers
appear in uninstallers mainly for user-friendly
applications, it was decided to scan another type
of applications: legitimate application installers.
The goal of this test was to �nd other patterns
for the optimization and to tell whether the in-
stallers also often contain PE headers.

In the test of the installers, just "exe" �les
(installers) were used. We made a scan of 1089
samples in total and found out that multiple
PE headers are very common here. 587 samples
have multiple PE headers. For optimization, the
patterns were extracted by the same way as for
uninstallers.

After the optimization by samples from both
installers and uninstallers, malware samples
were tested again to �nd out how many installers
or uninstallers are a�ected by malware. The new
results show that 39 samples of total 504 samples
(7.738 %) are installers or uninstallers infected
by a parasite virus.

These installers and uninstallers are present
in both user-friendly and malware applications
widely and it is di�cult to distinguish them us-
ing the introduced method. Therefore, these
kinds of applications were excluded from scan-
ning.

It is a common practice to express the success
of the method by ACC (Accuracy) value, but
this is not appropriate for this research, because
the false negative hits are not used. If a false
negative appears within this method, it does not
automatically mean that the hit is wrong. It can
happen when the malware is just a di�erent type
of malware and not a parasitic virus. Instead,
the FPR (False Positive Rate) value is used =
wrongly identi�ed goodware in percentage:

FPR =
FP

FP + TN
× 100. (1)

Where TN (True Negative) is correctly iden-
ti�ed non-malware (goodware) and FP (False
Positive) is wrongly identi�ed goodware (as mal-
ware).

The optimization by excluding installers and
uninstallers makes the FPR better: from
5.772 % to 2.199 % (lower is better). But it also
decreases the number of the detected malwares
from 504 to 465.

8. Discussion and

Comparison

It is provable that there is a signi�cant number
of viruses connecting itself to another �les, in-
cluding its headers. It is possible to detect the
multiple headers but this does not automatically
mean that this �le is a malware. After optimiza-
tion, we found out, that there is 2.199 % of legit-
imate applications containing also multiple PE
headers, by the same way as malware. Measured
value can be called "false positive rate" and can
be used for comparing with other methods:

Methods used by Schultz et al. [1] have fol-
lowing FPR values:

• RIPPER algorithm: from 5.34 % to 9.22 %.

• Naive Bayes algorithm: 3.80 %.

• Multi-Naive Bayes algorithm: 6.01 %.

Ronny Merkel et al. [4] made identi�cation
and evaluation of signi�cant features within PE
�les with FPR values from: 0.9 % to 52.4 %.

M. Belaoued and S. Mazouzi [7] use "False
Alarm rate" (FA) value to express false hits.
With Chi-Square-Based Decision methods they
received following results:

• TPFs subsets: from 4.76 % to 9.52 %

• APIs subsets: from 7.14 % to 28.57 %

• Combinations of API-TPF subsets: from
4.76 % to 9.52 %

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 159

VOLUME: 1 | ISSUE: 2 | 2017 | November

It is obvious, that the method introduced in
this paper gives satisfying results in false posi-
tive rate unlike some other methods. However,
this is mainly because our method is designed
for parasitic viruses only and some types of �les
must be excluded to get more FPR accuracy.
Other described methods are used for wide range
of malware.

9. Conclusion and Future

Work

The experiments show that examined method
can detect speci�c malware types that are called
parasitic viruses. The problem seems to be the
installers and uninstallers � these types of �les
are widely used by both user-friendly applica-
tions and malware. It is better to exclude these
�le types for the described detection method.
Multiple PE detection method can be used as a
base for �nding malware that is in some way
connected to a host �le, but due to the fact
that there is a small amount of legitimate ap-
plications also containing multiple headers, we
cannot recommend using this method as a stan-
dalone method or as a main detection method.
But we can recommend it as a fast method to
label suspicious �les for deeper analyzing.

There is space for improving our detecting
method. We will use introduced method to-
gether with multiple other methods that would
not have negative time impact. In our following
research, we will try to �nd out, if there exist
Windows API functions that are often used by
malware. Scanning these functions in samples
with multiple PE headers will improve results of
our method. In future, malware detection will
be improved by adding AI as well.

Malware writers implement mechanisms to
avoid multiple infections of the same �le by par-
asitic viruses. Following research will include a
deeper look at these mechanisms to use them
for malware detection together with our hereby
presented method.

Acknowledgment

The following grants are acknowledged for the
�nancial support provided for this research:
Grant of SGS No. SGS 2016/175, VSB�
Technical University of Ostrava and The Tech-
nology Agency of the Czech Republic TACR
TF01000091.

References

[1] SCHULTZ, M., E. ESKIN, E. ZADOK and
S. STOLFO. Data Mining Methods for De-
tection of New Malicious Executables. In
Proceedings 2001 IEEE Symposium on Se-
curity and Privacy. Oakland: IEEE, 2001,
pp. 38�49.

[2] KOLTER, J. Z. and M. A. MALOOF.
Learning to detect malicious executables
in the wild. In: Proceedings of the 2004
ACM SIGKDD international conference on
Knowledge discovery and data mining. New
York: ACM Press, 2004, pp. 470�478.

[3] SHAFIG, M., S. TABISH, F. MIRZA and
M. FAROOG. PE-Miner: Mining Struc-
tural Information to Detect Malicious Ex-
ecutables in Realtime. In: Recent Ad-
vances in Intrusion Detection. Heidelberg:
Springer, 2009, pp. 121�141.

[4] MERKEL, R., T. HOPPE, C. KRAET-
ZER and J. DITTMANN. Statistical Detec-
tion of Malicious PE-Executables for Fast
O�ine Analysis. In: Communications and
Multimedia Security. Heidelberg: Springer,
2010, pp. 93�105.

[5] SHAHZAD, F. and M. FAROOG. "Elf-
miner: Using structural knowledge and
data mining methods to detect new (Linux)
malicious executables. Knowledge and in-
formation systems. 2012, vol. 30, iss. 3,
pp. 589�612.

[6] LIAO, Y. Pe-header-based malware
study and detection. In: Department
of Computer Science, The University
of Georgia [online]. 2012. Available at:

160 c© 2017 Journal of Advanced Engineering and Computation (JAEC)

VOLUME: 1 | ISSUE: 2 | 2017 | November

http://www.cs.uga.edu/~liao/PE_
Final_Report.pdf.

[7] BELAOUED, M. and S. MAZOUZI. A
Chi-Square-Based Decision for Real-Time
Malware Detection Using PE-File Features.
Journal of Information Processing Systems.
2016, vol. 12, No. 4, pp. 644�660.

[8] BAPTISTE, D., E. FILIOL and K. GAL-
LIENNE. Structural analysis of binary ex-
ecutable headers for malware detection op-
timization. Journal of Computer Virology
and Hacking Techniques. 2017, vol. 13,
iss. 2, pp. 87�93.

[9] AYCOCK, J. D. Computer viruses and
malware. New York: Springer, 2006.

[10] BORELLO, J. M. and L. ME. Code obfus-
cation techniques for metamorphic viruses.
Journal in Computer Virology. 2008, vol. 4,
iss. 3, pp. 211�220.

[11] UPPAL, D., V. MEHRA and V. VERMA.
Basic survey on malware analysis, tools
and techniques. International Journal on
Computational Sciences & Applications
(IJCSA). 2014, vol. 4, no. 1, pp. 103�112.

[12] WONG, W. and M. STAMP. Hunting for
metamorphic engines. Journal in Computer
Virology 2.3. 2006, vol. 2, iss. 3, pp. 211-
229.

[13] SHARMA, A. and S. K. SAHAY. Evolution
and detection of polymorphic and meta-
morphic malwares: A survey. International
Journal of Computer Applications. 2014,
vol. 90, no. 2, pp. 7�11.

[14] PE Format. In: PE Format (Win-
dows) [online]. 2017. Available
at: http://msdn.microsoft.
com/en-us/library/windows/
desktop/ms680547(v=vs.85).aspx.

[15] SIKORSKI, M. and A. HONIG. Practi-
cal malware analysis: the hands-on guide
to dissecting malicious software. San Fran-
cisco: No Starch Press, 2012.

[16] Studna. In: Studna [online]. 2017. Available
at: http://www.studna.cz/.

[17] Find, Create, and Publish Open
Source software for free. In: Source-
Forge [online]. 2017. Available at:
http://sourceforge.net/.

[18] The Latest Versions of the Best Software.
In: FileHippo [online]. 2017. Available at:
http://filehippo.com/.

[19] VirusShare.com. In: VirusShare [on-
line]. 2017. Available at: http:
//virusshare.com/.

[20] Malekal's forum. In: Liste malware -
malekal.Com [online]. 2017. Available at:
http://malwaredb.malekal.com/.

[21] Automated Malware Analysis - Cuckoo
Sandbox. In: Automated Malware Analysis
- Cuckoo Sandbox [online]. 2017. Available
at: http://cuckoosandbox.org/.

About Authors

Filip ZATLOUKAL was born in Moravska
Trebova, Czech Republic. He received his Ing.
from VSB - Technical University of Ostrava in
2014. His research interests include malware
analysis.

Jiri ZNOJ was born in Sumperk, Czech
Republic. He received his Ing. from VSB -
Technical University of Ostrava in 2016. His
research interests include malware detection.

c© 2017 Journal of Advanced Engineering and Computation (JAEC) 161

http://www.cs.uga.edu/~liao/PE_Final_Report.pdf
http://www.cs.uga.edu/~liao/PE_Final_Report.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
http://www.studna.cz/
http://sourceforge.net/
http://filehippo.com/
http://virusshare.com/
http://virusshare.com/
http://malwaredb.malekal.com/
http://cuckoosandbox.org/

	Introduction
	Related Work
	The Overview of Malware Detection Methods
	Signature Based Detection:
	Behavior Based Detection:
	Hybrid Analysis:
	Statistical Based Detection:
	Different Approach:

	The Overview of Malware Infection Methods
	Prepending Viruses:
	Appending Viruses:
	Inserting Viruses:
	Overwriting Viruses:

	PE Format
	DOS MZ Header:
	DOS Stub:
	PE Header:
	Section Table:
	Sections:

	Experiment
	Dataset:
	Multiple PE Header Detection:
	Malware Protection:

	Results
	Optimization:

	Discussion and Comparison
	Conclusion and Future Work

