Journal of Advanced Engineering and Computation

JAEC Annual Best Cited Paper Award — Open Now!


Announcement of JAEC annual Best Cited Paper Award

To acknowledge the authors’ continued support to the JAEC, we are pleased to announce the opening of JAEC Annual Best-Cited Paper Award for research and review articles of the JAEC. In introducing the JAEC best cited paper award, we are offering an alternative to journal award committee for selecting 'the best paper'. The only objective and transparent metric which is highly correlated with the quality of a paper is the quantity and quality of citations. We hope that the design of this annual best-cited paper award will assure fairness and equal opportunity for all authors published in JAEC. We hope that this award will stimulate the best minds to release their best work.
  More...

AIMS & SCOPE
Journal of Advanced Engineering and Computation (JAEC) is a forum for the presentation of innovative ideas, approaches, developments, and research projects in the area of advanced engineering and computation. It serves to facilitate the exchange of information between researchers and industry professionals. Multi-disciplinary topics that connect the core areas of advanced engineering and computation and its applications are also covered in this journal.

It also aims to promote and coordinate developments in the field of advanced engineering and computation. The international dimension is emphasized in order to foster international collaboration in advanced engineering and computation to meet the needs of broadening the applicability and scope of the current body of knowledge.

READERSHIP
The journal provides a vehicle to help professionals, academics, researchers and policy makers working in fields relevant to advanced engineering and computation to disseminate information and to learn from each other's work.

CONTENTS
JAEC publishes original papers, review papers, technical reports, case studies, conference reports, management reports, book reviews, notes, commentaries and news. 

Call for Papers
Issue December - 2018 (Sep 18, 2018) More...
Research Open Access
Fethi DEMIM , Abdelkrim NEMRA , Kahina LOUADJ , Abdelghani BOUCHELOUKH , Mustapha HAMERLAIN , Abdelouahab BAZOULA
Page(s): 151-163 in Vol 2, Iss 3 (2018)

Simultaneous localization and mapping (SLAM) is an essential capability for Unmanned Ground Vehicles (UGVs) travelling in unknown environments where globally accurate position data as GPS is not available. It is an important topic in the autonomous mobile robot research. This paper presents an Adaptive De-centralized Cooperative Vision-based SLAM solution for multiple UGVs, using the Adaptive Covariance Intersection (ACI) supported by a stereo vision sensor. In recent years, SLAM problem has gotten a specific consideration, the most commonly used approaches are the EKF-SLAM algorithm and the FAST-SLAM algorithm. The primary, which requires an accurate process and an observation model, suffers from the linearization problem. The last mentioned is not suitable for real-time implementation. In our work, the Visual SLAM (VSLAM) problem could be solved based on the Smooth Variable Structure Filter (SVSF) is proposed. This new filter is robust and stable to modelling uncertainties making it suitable for UGV localization and mapping problem. This new strategy retains the near optimal performance of the SVSF when applied to an uncertain system, it has the added benefit of presenting a considerable improvement in the robustness of the estimation process. All UGVs will add data features sorted by the ACI that estimate position on the global map. This solution gives, as a result, a large reliable map constructed by a group of UGVs plotted on it. This paper presents a Cooperative SVSF-VSLAM algorithm that contributes to solve the Adaptive Cooperative Vision SLAM problem for multiple UGVs. The algorithm was implemented on three mobile robots Pioneer 3-AT, using stereo vision sensors. Simulation results show eciency and give an advantage to our proposed algorithm, compared to the Cooperative EKF-VSLAM algorithm mainly concerning the noise quality.

 

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access
Du DINH-CONG , Sang PHAM-DUY , Trung NGUYEN-THOI
Page(s): 164-173 in Vol 2, Iss 3 (2018)

The article presents an effective method for damage assessment of 2D frame structures using incomplete modal data by optimization procedure and model reduction technique. In this proposed method, the structural damage detection problem is defined as an optimization problem, in which a hybrid objective function and the damage severity of all elements are considered as the objective function and the continuous design variables, respectively. The teaching-learning-based optimization (TLBO) algorithm is applied as a powerful optimization tool to solve the problem. In addition, owing to the use of incomplete measurements, an improved reduction system (IRS) technique is adopted to reduce the mass and stiffness matrices of structural finite element model. The efficiency and robustness of the proposed method are validated with a 4-storey (3 bay) steel plane frame involving several damage scenarios without and with measurement noise. The obtained results clearly demonstrate that even the incompleteness and noisy environment of measured modal data, the present method can work properly in locating and estimating damage of the frame structure by utilizing only the first five incomplete modes' data.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access
Diem Ngoc TRAN , Tom VINANT , Théo Marc COLOMBANI , Diem HO-KIEU
Page(s): 174-187 in Vol 2, Iss 3 (2018)

This paper aims to present a code for implementation of non-hierarchical algorithm to cluster probability density functions in one dimension for the first time in R environment. The structure of code consists of 2 primary steps: executing the main clustering algorithm and evaluating the clustering quality. The code is validated on one simulated data set and two applications. The numerical results obtained are highly compatible with that on MATLAB software regarding computational time. Notably, the code mainly serves for educational purpose and desires to extend the availability of algorithm in several environments so as having multiple choices for whom interested in clustering.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access
Abdelhakim BOURICHA , Tahar BOUTHIBA , Samira SEGHIR , Rebiha BOUKHARI
Page(s): 188-196 in Vol 2, Iss 3 (2018)

This paper presents a method for detecting, classifying and localizing faults in MV distribution networks. This method is based on only two samples of current or voltage signals. The fault detection, faultclassification and fault localization are based on the maximum value of current and voltage as a function of time. A study is presented in this work to evaluate the proposed method.A comparative study between current and voltage method detection has been done to determine which is the fastest. In addition, the classication and localization of faults were made by the same method using two samples signal. Simulation with results have been obtained by using MATLAB / Simulink software. Results are reported and conclusions are drown.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access
Khoa Anh TRAN
Page(s): 197-207 in Vol 2, Iss 3 (2018)

Device-to-Device (D2D) has attracted substantial research attention recently and has been recognized as an essential approach to performance improvement in 5G networks, due to its potential to improve coverage, spectrum efficiency, and energy within the existing cellular network. In this paper, we refer to an LTE-A scenario in which the underlay mode is adopted to allow D2D pairs to communicate directly by sharing sub-channels with Cellular Users (CUEs) and cellular mode (CELLM), where two D2D users communicate through the eNB as conventional CUEs and no direct D2D link is established. In this case, the eNB is used
as a relay. Our aim is to propose heuristic resource allocation schemes to distribute radio resources among CUEs and D2Ds in a cell taking the interference because of pairing into account. Finally, an analytical approach is proposed to characterize CUE and D2D capacity as well as outage probability for D2D cellular mode.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access
Doan Quoc Anh NGUYEN
Page(s): 208-215 in Vol 2, Iss 3 (2018)

When the features of remote phosphor structure are compared with these of conformal phosphor or in-cup phosphor, it is recognized that it is more outstanding than the rest about luminous flux but the quality of color tends to be worse. Through that we have grasped these disadvantages and find out many studies in order to improve the color of the remote phosphor structure. In this study, we propose a dual-layer remote phosphor structure that could improve the color rendering index (CRI) and color quality scale (CQS) for WLEDs. In this study, three similar WLEDs structures but having different color temperatures including 5600 K, 6600 K and 7700K are applied. The principal idea is putting a red phosphoric layer SrwFxByOz:Eu2+,Sm2+ on the yellow phosphorus layer YAG:Ce3+. The results show that SrwFxByOz:Eu2+,Sm2+  brings great benefits to increasing CRI and CQS. Specifically, the greater the concentration of SrwFxByOz:Eu2+,Sm2+ has, the higher CRI and CQS get. However, the declining trend of luminous flux occurs when the SrwFxByOz:Eu2+,Sm2+ concentration exceeds the level. This can be demonstrated through the results of the study and be explained by the Mie dispersion theory and the Lambert-Beer law. The results of this article are important in making WLEDs of higher color quality.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access (978 views since : Nov 30, 2017)
Thao Nguyen-Trang , Long Vu-Hoang , Trieu Nguyen-Thi , Ha Che-Ngoc
Page(s): 123-133 in Vol 1, Iss 2 (2017)

Tax consulting service is one of various professional consulting services and is interested to study by many researchers. Nevertheless, this issue has not been interested to research in Vietnam. This paper performs confirmatory factors analysis (CFA) and structural equation modeling (SEM) to identify the factors influencing the intentions of using tax consulting services of firms in Ho Chi Minh city, Vietnam. Specifically, this paper finds that the intentions depend on the “attitude toward the behavior” and “replacement”. In addition, through Chi-square test, it can be proven that the intentions also depend on type of firms and whether they have ever used tax consulting service or not. Based on the obtained results, the discussion and recommendation are also proposed.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (772 views since : Jun 8, 2017)
Jaroslav Pokorny
Page(s): 04-17 in Vol 1, Iss 1 (2017)

Comparing graph databases with traditional,e.g., relational databases, some important database features are often missing there. Particularly, a graph database schema including integrity constraints is mostly not explicitly defined, also a conceptual modelling is not used. It is hard to check a consistency of the graph database, because almost no integrity constraints are defined or only their very simple representatives can be specified. In the paper, we discuss these issues and present current possibilities and challenges in graph database modelling. We focus also on integrity constraints modelling and propose functional dependencies between entity types, which reminds modelling functional dependencies known from relational databases. We show a number of examples of often cited GDBMSs and their approach to database schemas and ICs specification. Also a conceptual level of a graph database design is considered. We propose a sufficient conceptual model based on a binary variant of the ER model and show its relationship to a graph database model, i.e. a mapping conceptual schemas to database schemas. An alternative based on the conceptual functions called attributes is presented.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (738 views since : Nov 30, 2017)
Thi Phuong Thao Nguyen , Doan Quoc Anh Nguyen , Miroslav Voznak , Van Tho Le
Page(s): 87-94 in Vol 1, Iss 2 (2017)

Enhancement of the color uniformity, the lumen output of the multi-chip white LED lamps (MCW-LEDs) at high color correlated temperature is a big challenge for researchers. However, an innovative LED lamp designed with a phosphor compounding, which combines (La,Ce,Tb) PO4:Ce:Tb (LaTb) green phosphor with YAG: CE yellow phosphor, is proposed as an optimal solution to this requirement. Index, using LaTb green phosphor into MCWLEDs could bring a superior optical performance for MCW-LEDs. It is found that the lumen output of this new MCW-LED at a high color temperature of 8500 K significantly improves up to 1600 lm compared to MCW-LEDs without LaTb phosphor. The simulation results demonstrated that the CCT deviation sharply decreases from 9000 to 1000 at the LaTb concentration range from 0 to 1.8 %, while the Color Rendering Index ability (CRI) and the Color Quality Scale (CQS) slightly decrease. To obtain the highest lumen output and the best color uniformity, the particle size range within 6 - 8 µm should be suggested.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access (708 views since : Jun 8, 2017)
Dung Quang Nguyen
Page(s): 39-47 in Vol 1, Iss 1 (2017)

Fractional-order controllers are recognized to guarantee better closed-loop performance and robustness than conventional integer-order controllers. However, fractional-order transfer functions make time, frequency domain analysis and simulation significantly difficult. In practice, the popular way to overcome these difficulties is linearization of the fractional-order system. Here, a systematic approach is proposed for linearizing the transfer function of fractional-order systems. This approach is based on the real interpolation method (RIM) to approximate fractional-order transfer function (FOTF) by rational-order transfer function. The proposed method is implemented and compared to CFE high-frequency method; Carlson’s method; Matsuda’s method; Chare ’s method; Oustaloup’s method; least-squares, frequency interpolation method (FIM). The results of comparison show that, the method is simple, computationally efficient, flexible, and more accurate in time domain than the above considered methods.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (697 views since : May 8, 2017)
Tuan Le Anh
Page(s): 18-28 in Vol 1, Iss 1 (2017)

This paper presents an extended Kalman filtering (EKF) algorithm for estimating immeasurable state variables of a vehicle stability control system. Initially, the steering angle and vertical forces on the tires were considered inputs of the estimator. The measured process outputs were the sensor signals egarding longitudinal and lateral accelerations, steering angle, yaw rate, and wheel speed. Subsequently, by using Euler discretization for a seven-degree-of-freedom nonlinear vehicle model, difficult-to-measure state variables such as lateral velocity, vehicle side-slip angle, and lateral tire forces were identified separately by using the EKF algorithm. The estimation results of the proposed control system evidenced high performance.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access (688 views since : Jun 8, 2017)
Thien Bao Tat Nguyen
Page(s): 80-86 in Vol 1, Iss 1 (2017)

In this paper, we have discussed the synchronization between coupled Josephson Junctions which experience different chaotic oscillations. Due to potential high-frequency applications, the shunted nonlinear resistive-capacitive-inductance junction (RCLSJ) model of Josephson junction was considered in this paper. In order to obtain the synchronization, an adaptive MIMO controller is developed to drive the states of the slave chaotic junction to follow the states of the master chaotic junction. The developed controller has two parts: the fuzzy neural controller and the sliding mode controller. The fuzzy neural controller employs a fuzzy neural network to simulate the behavior of the ideal feedback linearization controller, while the sliding mode controller is used to ensure the robustness of the controlled system and reduce the undesired effects of the estimate errors. In addition, the Lyapunov candidate function is also given for further stability analysis. The numerical simulations are carried out to verify the validity of the proposed control approach.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.