Journal of Advanced Engineering and Computation

Issued quaternary

JAEC Annual Best Cited Paper Award — Open Now!


Announcement of JAEC annual Best Cited Paper Award

To acknowledge the authors’ continued support to the JAEC, we are pleased to announce the opening of JAEC Annual Best-Cited Paper Award for research and review articles of the JAEC. In introducing the JAEC best cited paper award, we are offering an alternative to journal award committee for selecting 'the best paper'. The only objective and transparent metric which is highly correlated with the quality of a paper is the quantity and quality of citations. We hope that the design of this annual best-cited paper award will assure fairness and equal opportunity for all authors published in JAEC. We hope that this award will stimulate the best minds to release their best work.
Click here to download JAEC flyer and share to friends More...

AIMS & SCOPE
Journal of Advanced Engineering and Computation (JAEC) is a forum for the presentation of innovative ideas, approaches, developments, and research projects in the area of advanced engineering and computation. It serves to facilitate the exchange of information between researchers and industry professionals. Multi-disciplinary topics that connect the core areas of advanced engineering and computation and its applications are also covered in this journal.

It also aims to promote and coordinate developments in the field of advanced engineering and computation. The international dimension is emphasized in order to foster international collaboration in advanced engineering and computation to meet the needs of broadening the applicability and scope of the current body of knowledge.

READERSHIP
The journal provides a vehicle to help professionals, academics, researchers and policy makers working in fields relevant to advanced engineering and computation to disseminate information and to learn from each other's work.

CONTENTS
JAEC publishes original papers, review papers, technical reports, case studies, conference reports, management reports, book reviews, notes, commentaries and news. 

Call for Papers
Issue September - 2019 (Jul 1, 2019) More...
Research Open Access
Kenji Takizawa , Yuri Bazilevs , Tayfun E. Tezduyar , Ming-Chen Hsu
Page(s): 366-405 in Vol 3, Iss 2 (2019)
Time cited: 0
Computational cardiovascular flow analysis can provide valuable information to medical doctors in a wide range of patientspecific cases, including cerebral aneurysms, aortas and heart valves. The computational challenges faced in this class of flow analyses also have a wide range. They include unsteady flows, complex cardiovascular geometries, moving boundaries and interfaces, such as the motion of the heart valve leaflets, contact between moving solid surfaces, such as the contact between the leaflets, and the fluid–structure interaction between the blood and the cardiovascular structure. Many of these challenges have been or are being addressed by the Space–Time Variational Multiscale (ST-VMS) method, Arbitrary Lagrangian–Eulerian VMS (ALE-VMS) method, and the VMS-based Immersogeometric Analysis (IMGA-VMS), which serve as the core computational methods, and the special methods used in combination with them. We provide an overview of the core and special methods and present examples of challenging computations carried out with these methods, including aorta and heart valve flow analyses.
Research Open Access
Phuc Toan Dang , Khai Q. Le , Quang Minh Ngo , H. P. T. Nguyen , Truong Khang Nguyen
Page(s): 406-414 in Vol 3, Iss 2 (2019)
Time cited: 0

A practical guided-mode resonance filter operating in the visible band of the electromagnetic spectrum is numerically designed in this paper. The filter provides high background
transmission (
>90%) with almost perfect reflection at resonance wavelengths of 623 nm and 641 nm for TE and TM modes, respectively. Our filter is also characterized by its sensitivity to
incident angles, polarizations, and a refractive index of the surrounding environment which are
utilized in practical applications such as tunable optical filters, imaging or detection. We show
that the resonant transmission spectral response can be used for highly sensitive, a potential label-free refractive index biosensor having sensitivities of 90 nm/RIU and 103 nm/RIU, and figure of merits of 1.93 and 2.13 for TM and TE polarizations, respectively.


Research Open Access
Lukas Revay , Ivan Zelinka
Page(s): 415-424 in Vol 3, Iss 2 (2019)
Time cited: 0
To simulate some behavior of swarms, the malware was selected as a carrier of intelligence. This article describes the current solution which is fully virtual. This gives us a possibility to interfere environment and see how the improved malware will react. This common intention provides improvements related to docker images and also architectural that is related to
code changes. Communication over network together with cooperation on particle level is a key part of this solution. Malware movements are the same as movements of swarm particles, which fully fit this requirement. Significance is also put on the swarming part, where the decision which swarms algorithm to utilize is crucial. The outcome from this work should be partly practical and theoretical related to environment setup, particles communication, movements and coordination which finally finishes in distributed denial of service (DDoS) coordinated attack via hypertext transfer protocol (HTTP) to some server. After this theoretical work, the practical simulation will be done to see if the swarm attack brings expected results.


Research Open Access
Doan Quoc Anh Nguyen , Xuan Le Phan , Hsiao-Yi Lee
Page(s): 426-432 in Vol 3, Iss 2 (2019)
Time cited: 0

The luminous flux of two different dual-remote phosphor structures concluding flat dual-remote phosphor (FDRP) and concave dual-remote phosphor (CDRP) is compared in this paper. The outcomes demonstrate that the FDRP structure is more lucrative than the CDRP structure. The article additionally clears up that in CDRP structure, the distance between two phosphor layers (d1) and the distance between the phosphor layer with the LED surface (d2) enormously affect the optical properties. Moreover, the difference in d1 and d2 causes a dramatic variance in the scattering and absorption properties of the remote phosphor layer and hence hugely affects WLEDs' illumination ability and chromatic uniformity. In order to limit these problems, the correlated color temperature of WLEDs, which is essentially a gauge of how the chromaticity observed when a "black body" radiator is warmed to a foreordained temperature, should be balanced out at 8500K when d1 and d2 vary, requiring a suitable modification of the YAG:Ce3+ phosphor's concentration. When d1 = d2 = 0, the scattering and assimilation in the remote phosphor layer become lowermost, prompting the most reduced viability in both shading quality and iridescent transition,
which is confirmed dependent on the unearthly impacts created when these two separations are not same. Then again, when d
1 and d2 get bigger, so does the dispersing surface, and the mixing of the blue beams with yellow beams swings to be increasingly homogeneous. This gives the insignificant different white light yet can't achieve any enhancement for luminous flux. According to the researched results, the luminous flux reaches a peak at 1020 lm when d1 = 0.08 mm or d2 = 0.63 mm whereas the chromatic inhomogeneity hits the lowest point when d1 = 0.64 mm or d2 = 1.35 mm.

Research Open Access
Aqeel AL-khafaji
Page(s): 433-441 in Vol 3, Iss 2 (2019)
Time cited: 0

The purpose of the present paper is to derive several subordination, superordination results, and sandwich results for the function of the form $f\left(z\right)=z+\sum^{\infty }_{n=2}{a_nz^n}$ which is univalent in the open unit disc $\ U=\left\{z\in \mathbb{C}:\left|z\right|.

Research Open Access (1057 views since : Nov 30, 2017)
Thao Nguyen-Trang , Long Vu-Hoang , Trieu Nguyen-Thi , Ha Che-Ngoc
Page(s): 123-133 in Vol 1, Iss 2 (2017)
Time cited: 0

Tax consulting service is one of various professional consulting services and is interested to study by many researchers. Nevertheless, this issue has not been interested to research in Vietnam. This paper performs confirmatory factors analysis (CFA) and structural equation modeling (SEM) to identify the factors influencing the intentions of using tax consulting services of firms in Ho Chi Minh city, Vietnam. Specifically, this paper finds that the intentions depend on the “attitude toward the behavior” and “replacement”. In addition, through Chi-square test, it can be proven that the intentions also depend on type of firms and whether they have ever used tax consulting service or not. Based on the obtained results, the discussion and recommendation are also proposed.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (887 views since : Jun 8, 2017)
Jaroslav Pokorny
Page(s): 04-17 in Vol 1, Iss 1 (2017)
Time cited: 0

Comparing graph databases with traditional,e.g., relational databases, some important database features are often missing there. Particularly, a graph database schema including integrity constraints is mostly not explicitly defined, also a conceptual modelling is not used. It is hard to check a consistency of the graph database, because almost no integrity constraints are defined or only their very simple representatives can be specified. In the paper, we discuss these issues and present current possibilities and challenges in graph database modelling. We focus also on integrity constraints modelling and propose functional dependencies between entity types, which reminds modelling functional dependencies known from relational databases. We show a number of examples of often cited GDBMSs and their approach to database schemas and ICs specification. Also a conceptual level of a graph database design is considered. We propose a sufficient conceptual model based on a binary variant of the ER model and show its relationship to a graph database model, i.e. a mapping conceptual schemas to database schemas. An alternative based on the conceptual functions called attributes is presented.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (834 views since : Nov 30, 2017)
Thi Phuong Thao Nguyen , Doan Quoc Anh Nguyen , Miroslav Voznak , Van Tho Le
Page(s): 87-94 in Vol 1, Iss 2 (2017)
Time cited: 2

Enhancement of the color uniformity, the lumen output of the multi-chip white LED lamps (MCW-LEDs) at high color correlated temperature is a big challenge for researchers. However, an innovative LED lamp designed with a phosphor compounding, which combines (La,Ce,Tb) PO4:Ce:Tb (LaTb) green phosphor with YAG: CE yellow phosphor, is proposed as an optimal solution to this requirement. Index, using LaTb green phosphor into MCWLEDs could bring a superior optical performance for MCW-LEDs. It is found that the lumen output of this new MCW-LED at a high color temperature of 8500 K significantly improves up to 1600 lm compared to MCW-LEDs without LaTb phosphor. The simulation results demonstrated that the CCT deviation sharply decreases from 9000 to 1000 at the LaTb concentration range from 0 to 1.8 %, while the Color Rendering Index ability (CRI) and the Color Quality Scale (CQS) slightly decrease. To obtain the highest lumen output and the best color uniformity, the particle size range within 6 - 8 µm should be suggested.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Open Access (777 views since : Jun 8, 2017)
Dung Quang Nguyen
Page(s): 39-47 in Vol 1, Iss 1 (2017)
Time cited: 3

Fractional-order controllers are recognized to guarantee better closed-loop performance and robustness than conventional integer-order controllers. However, fractional-order transfer functions make time, frequency domain analysis and simulation significantly difficult. In practice, the popular way to overcome these difficulties is linearization of the fractional-order system. Here, a systematic approach is proposed for linearizing the transfer function of fractional-order systems. This approach is based on the real interpolation method (RIM) to approximate fractional-order transfer function (FOTF) by rational-order transfer function. The proposed method is implemented and compared to CFE high-frequency method; Carlson’s method; Matsuda’s method; Chare ’s method; Oustaloup’s method; least-squares, frequency interpolation method (FIM). The results of comparison show that, the method is simple, computationally efficient, flexible, and more accurate in time domain than the above considered methods.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (770 views since : Jun 8, 2017)
Thien Bao Tat Nguyen
Page(s): 80-86 in Vol 1, Iss 1 (2017)
Time cited: 0

In this paper, we have discussed the synchronization between coupled Josephson Junctions which experience different chaotic oscillations. Due to potential high-frequency applications, the shunted nonlinear resistive-capacitive-inductance junction (RCLSJ) model of Josephson junction was considered in this paper. In order to obtain the synchronization, an adaptive MIMO controller is developed to drive the states of the slave chaotic junction to follow the states of the master chaotic junction. The developed controller has two parts: the fuzzy neural controller and the sliding mode controller. The fuzzy neural controller employs a fuzzy neural network to simulate the behavior of the ideal feedback linearization controller, while the sliding mode controller is used to ensure the robustness of the controlled system and reduce the undesired effects of the estimate errors. In addition, the Lyapunov candidate function is also given for further stability analysis. The numerical simulations are carried out to verify the validity of the proposed control approach.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Research Open Access (765 views since : May 8, 2017)
Tuan Le Anh
Page(s): 18-28 in Vol 1, Iss 1 (2017)
Time cited: 0

This paper presents an extended Kalman filtering (EKF) algorithm for estimating immeasurable state variables of a vehicle stability control system. Initially, the steering angle and vertical forces on the tires were considered inputs of the estimator. The measured process outputs were the sensor signals egarding longitudinal and lateral accelerations, steering angle, yaw rate, and wheel speed. Subsequently, by using Euler discretization for a seven-degree-of-freedom nonlinear vehicle model, difficult-to-measure state variables such as lateral velocity, vehicle side-slip angle, and lateral tire forces were identified separately by using the EKF algorithm. The estimation results of the proposed control system evidenced high performance.

Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.